Иллюстрированный самоучитель по Digital Graphics



Расчет количества разрядов - часть 2


Для степенной зависимости обратной является логарифмическая функция:

п = log2N, где п — это количество двоичных разрядов, а N — количество кодов.

Справка

Логарифм данного числа N при основании а является показателем степени у, в которую нужно возвести число а, чтобы получить N, т. е. N = ау.

Такой логарифм обозначается обычно как logаN, а равенство у = !одах определяет логарифмическую функцию. Основные свойства логарифма позволяют заменить умножение, деление, возведение в степень и извлечение корня более простыми действиями сложения, вычитания, умножения и деления, т. к. при умножении степени складываются, при делении — вычитаются и т. д.

Логарифмы открыты шотландским математиком Дж. Непером и швейцарским математиком И. Бюрги в начале XVII века. Термин "логарифм" возник из греческих слов "logos", что означает "соотношение", и "arithmos" — "число".

Важная мысль

Таким образом, мы выяснили, что для передачи определенного количества кодов (сигналов и чего угодно) необходимо выбрать число двоичных разрядов, равное степени, в которую необходимо возвести число "2", чтобы получить число, соответствующее количеству кодов или слегка превышающее его.

В приведенных выше примерах мы специально выбирали такие числа ("12" или "10"), у которых получается определенный избыток двоичных разрядов. Конечно, разумнее всего так подобрать количество кодов, чтобы они требовали соответствующего количества разрядов. Но это возможно только в том случае, если коды создаются произвольно.

К сожалению, так получается не всегда. Чаще всего ситуация не позволяет изменять количество кодов, например нельзя изменить количество букв алфавита.




Содержание  Назад  Вперед