Усреднение сигналов в пределах "дискретов"
Замечание
В содержательном смысле превращение фрагмента непрерывного сигнала в одно-единственное значение является нетривиальной процедурой. Действительно, как выбрать наиболее характерное значение? Если бы анализом и отбором занимались люди, например музыканты, то понятно, что при очень небольшой производительности качество приближалось бы к оптимально художественному. На самом деле, для технической реализации необходимо применить стандартизированный прием, например использовать текущее значение в момент "биения" метронома. Этот нюанс уже зависит от конкретного технического решения.
Но поскольку за эту интеграцию "отвечает" вычислительная техника, необходимо принять максимально простой алгоритм. А самой простой процедурой в этой ситуации является усреднение (хотя возможен выбор минимального или максимального значения в интервале).
Пример-метафора
Предположим, что в учебной канцелярии возникла необходимость сравнить успеваемость двух групп. Как это сделать? Понятно, что в обеих группах есть "отличники" и "двоечники", т. е. существует определенный разброс оценок по разным дисциплинам. Если же будут выбраны усредненные значения, не учитывающие разброса, то в общем (с неизбежными погрешностями) мы получим основания для того, чтобы сравнивать, т. к. располагаем дискретными значениями. Скажем, в одной группе средний балл получился равным 4,9, а в другой — 3,1. Понятно, что первая группа по успеваемости значительно превосходит вторую, хотя для двух конкретных студентов из этих групп это соотношение может быть несправедливым.
Конечно, в этом алгоритме есть недостатки, которые являются неизбежной платой за возможность сравнения. В той группе, где средний балл оказался равным 3,1, отдельный студент может иметь пятерки по всем предметам. Невзирая на это, вся группа числится в отстающих. Кого-то это может не устраивать, но такова объективная реальность, таков механизм, таков алгоритм.
Замечание
Этот алгоритм не носит, впрочем, всеобщего характера.
Возможны и анекдотические случаи: скажем, средняя температура по больнице.
В результате усреднения (интеграции) сигнала в пределах диапазона дискретизации на графике появится множество средних значений. На каждом дискретном участке они отображаются линиями, параллельными горизонтальной оси.
Пример-метафора
Представьте себе график прибылей какого-либо предприятия. Этот график отображает информацию о каждом рабочем дне. Для прогнозирования необходима обобщенная информация, например помесячно.
Но с помощью такого ежедневного графика невозможно сравнивать помесячные доходы друг с другом (вспомните успеваемость группы по отдельным учащимся и по отдельным предметам), значения по дням имеют очень значительный разброс. Поэтому необходимо определить усредненные значения прибыли за каждый месяц. В результате вместо ежедневного графика получается график помесячный, который наглядно отображает уровни прибылей.
Стоит обратить внимание, что после процедуры усреднения аналоговый сигнал преобразуется в ступенчатую линию, которая, в общем, конечно, имитирует исходную кривую (рис. 6.5).